3D프린팅 산업현황 및 시장동향

│ 저자 │ **전기영 PD** / 한국산업기술평가관리원 **○│재득 책임연구원** / 한국산업기술평가관리원 **강승철 차장** / KEA

SUMMARY

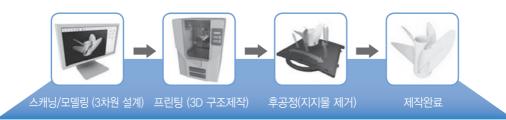
// 목적

- ★ 3D프린팅은 기존 산업의 패러다임을 변화시켜 제조업 혁신 및 창조경제 신시장을 창출할 핵심기술이나 스트라타시스(Stratasys)와 3D시스템즈 양사가 전체시장의 65% 이상을 점유할 정도로 소수 상위기업이 시장을 독점하는 상황임
- ★ 본 보고서에서는 국내외 3D프린팅 산업현황 및 시장동향을 분석하고 국내 3D프린팅 산업의 경쟁력을 높이기 위한 정책방향을 제시하고자 함

✓ 주요현황

- ★ 3D프린팅 관련시장은 '09년 이후 큰 성장을 경험하고 있으며, 최근 5년 동안 시장크기가 4배로 성장하여, 2015년에 약 51.6억 달러 규모를 기록
- ★ 산업용 3D프린터 제조업체 중 2015년 판매량에 따른 시장 점유율은 스트라타시스(5,166대), 3D시스템즈 양사가 전체 판매량의 65% 이상을 차지하며, 매출액 기준으로도 50% 내외(약 14억 달러) 점유
- ★ 현재 국내에서 3D프린팅 관련 사업을 영위하고 있는 기업은 190여개 내외로 추정되며, 2014년도 국내 3D 프린팅산업 총매출액은 1,562억원으로 조사되었음

// 시사점 및 정책제안


- ★ 글로벌 선도기업이 3D프린팅 장비 관련 핵심 원천기술(SLS, SLA 등)을 주도 중이며, 국내는 고부가가치 장비 개발을 위한 기술력이 미흡한 상황임
- ★ 기업 활용여건에서도 기구축된 장비를 기업들이 활용하기에 전·후처리 장비가 부족하고, TP·연구기관은 산발적으로 장비 구축·운영 중이어서 효율성이 떨어짐
- ★ 국내 기술력수준 및 시장흐름 등을 고려하여, 단기적으로 산업용 프린터 기술개발과 시장조성을 위한 수요창출 중점 추진이 필요함
- ★ 3D프린팅 기술 활용이 적합하고, 그에 따른 파급효과가 클 것으로 기대되는 분야(의료기기, 조선부품 등)를 선정하여 우선 지원
- ★ 조선·항공 등 부품 산업의 경우 최종제품 생산이 가능한 지속적인 기술개발 추진 및 시장수요 창출을 위한 기업지원·홍보, 품질인증지원 체계 구축 필요

KEIT PD Issue Report

1. 3D프린팅 개요

■ 3D프린팅은 기존 산업의 패러다임을 변화시켜 제조업 혁신 및 창조경제 신시장을 창출할 핵심기술

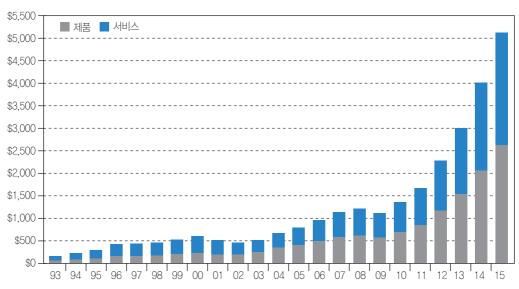
- ★ 3D프린팅은 3차원으로 디자인된 디지털 도면 정보를 3D프린터에 입력하여 입체적인 형태로 출력하는 기술이며, 플라스틱, 금속, 석재, 종이 등 대부분의 소재와 색상을 구현할 수 있음
 - 3D프린팅은 재료를 자르거나 깍아 생산하는 절삭가공과 대비되는 개념으로 공식적인 용어는 적층제조(AM, Additive Manufacturing) 또는 쾌속조형(RP, Rapid Prototyping)임

| 그림 1. 3D프린팅을 통한 제조 프로세스 |

★ 3D프린팅은 소재형태(액체, 필라멘트, 분말, 시트 등)와 출력방식(압출, 소결, 경화, 분사 등)에 따라 크게 7가지 기술방식이 존재

기술	정의	방식	재료
광중합 방식	빛을 조사하여 플라스틱 소재의 중합반응을 일으켜	SLA	Photopolymer
(Vat Photopolymerization)	선택적 고형화시키는 방식	DLP	
재료분사 분식	용액형태의 소재를 Jetting으로 토출시키고 자외선	Polyjet	Photopolymer, wax
(Material jetting)	등으로 경화시키는 방식	MJM	
재료압출 방식 (Material extrusion)	고온 가열한 재료를 노즐을 통해 압력으로 연속해서 밀어내며 위치를 이동시켜 물체를 형상하는 방식	FDM FFF	Clay, food, metals, Ceramics, metal
분말적층용융 방식 (Powder bed fusion)	가루형태의 모재위에 고에너지빔을 주사하며 조사해서 선택적으로 소재를 결합시키는 방식	DMLS EBM SLS	Metal alloy, Steel, Aluminum,/Metal/ Ceramic Powder
접착제분사 방식	가루 형태의 모재 위에 액체형태의 접착제를	3DP	Plaster
(Binder jetting)	토출시켜 모재를 결합시키는 방식	PP	
고에너지직접조사방식	고에너지원(레이저, 전자빔 등)으로 원소재를 녹여	DMT	Metal
(Direct energy deposition)	부착시키는 방식	LMD	
Sheet Lamination	얇은 필름형태의 재료를 열, 접착제 등으로	LOM	Paper, metal foil,
	붙여가며 적층시키는 방식	UC	Metal foil

2. 3D프린팅 글로벌 시장규모


✔ 3D프린팅 관련시장은 '09년 이후 큰 성장을 경험하고 있으며, 최근 5년 동안 시장크기가 4배로 성장하여, 2015년에 약 51.6억 달러 규모를 기록

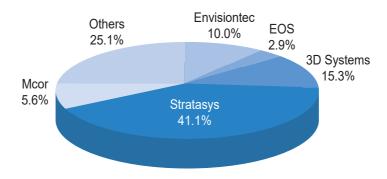
- ★ (3D프린팅 제품) 전세계 매출은 2015년 약 23.6억 달러(\$2,365 billion)이며, 2014년(\$1,997 billion)에 비해 18.4% 성장 - 장비, 시스템 업그레이드, 재료, 애프터마켓 제품(소프트웨어, 레이저 등) 등
- ★ (3D프린팅 서비스) 전세계 매출이 2015년 약 28억 달러(\$2,800 billion)로 성장했으며, 2014년(\$2,105 billion)에 비해 33.0% 증가
 - AM으로 제작한 부품, 유지보수 계약, 교육, 세미나, 컨퍼런스, 전시회, 광고, 출판물, 컨설팅 서비스, 연구용역 등

구분	2011년	2012년	2013년	2014년	2015년
3D프린팅 시장	29.4	32,7	33.4	35,2	25.9
제품시장	28.0	28,8	41.3	31.6	18.4
서비스 시장	30.7	36.4	26.3	38.9	33.0

※출처: Wohlers Report 2016 가공

(단위:%)

│ 표 1. 글로벌 3D프린팅 시장 성장률(2011년~2015년) │

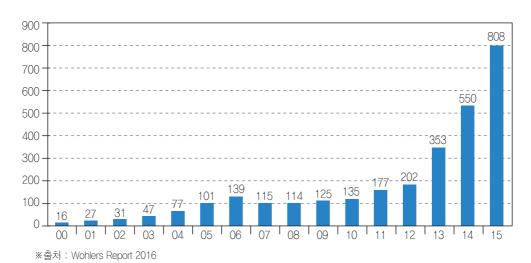

※출처: Wohlers Report 2016

| 그림 2. 글로벌 3D프린팅 시장 매출(단위:백만불) |

3. 3D프린팅 세부 시장동향

/// 산업용 시장

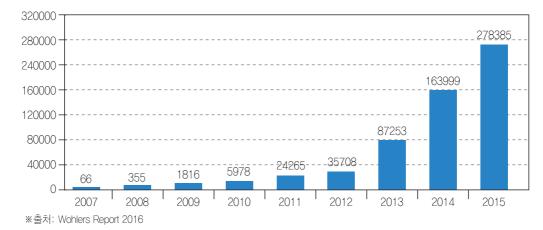
- ★ 산업용 3D프린터 제조업체 중 2015년 판매량에 따른 시장 점유율은 스트라타시스(5,166대), 3D시스템즈 양사가 전체 판매량의 65% 이상을 차지하며, 매출액 기준으로도 50% 내외(약 14억 달러) 점유
 - 금속 부품제작을 위한 메탈 3D프린팅 기술의 수요가 증가하고 있으며, 808대의 금속 3D프린터가 2015년에 판매되어 2014년(550대)에 비해 46.9% 증가


| 그림 3. 산업용 3D프린터 제조사 판매량에 따른 시장 점유율(2016년) |

★ 3D프린팅은 소재형태(액체, 필라멘트, 분말, 시트 등)와 출력방식(압출, 소결, 경화, 분사 등)에 따라 크게 7가지 기술방식이 존재 (단위:백만불)

					(= · · · · = = /
주요기업	'14 매출	'15 매출	'16 매출 (예측)	'17 매출 (예측)	'16 성장률 (예측)
3D Systems	654	666	678	737	2%
Stratasys	750	696	714	778	3%
ExOne	47	40	51	63	26%
Arcam AB	339	576	736	936	28%
Voxeljet	19	25	33	43	30%
SLM Solutions	34	64	89	22	40%
Materialise	98	111	132	157	19%
Proto Labs	210	264	335	406	27%

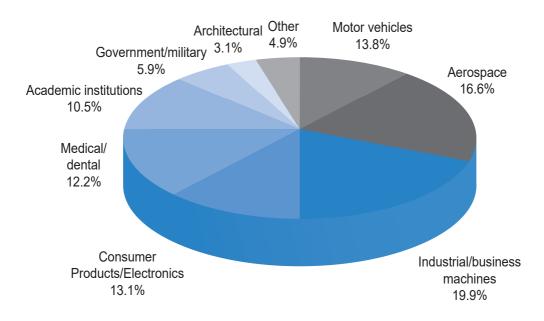
※출처: Factset


| 표 2. 해외 주요기업의 매출액 현황 |

| 그림 4. 금속 3D프린팅 시장 연도별 성장추이(판매량) |

₩ 개인용 시장

- ★ 개인용 3D프린터(Desktop 3D Printer)는 5천 달러 이하의 RepRap 및 RepRap에서 파생된 FFF 방식의 장비 시장으로 정의함
 - 메이커봇(MakerBot), Beijing Tiertime, 3D시스템조(3D Systems) 외 전세계 수많은 회사가 제품을 개발 · 공급하고 있음
 - 개인용 3D프린터 판매량은 해마다 급증하고 있으며, 2015년에도 전년도 대비 69.7% 성장한 278,385대가 판매된 것으로 추정되며.
 - 최근 3년간 급속한 성장률을 보이고 있으며, 2012년부터 4년간 판매량 평균 성장률은 87.3%에 이름


│ 그림 4. 전세계 개인용 3D프린터 판매량 │

KEIT PD Issue Report

- ★ 2015년 시장매출은 약 2.9억 달러(\$293.6 million) 규모이며, 이 수치는 전체 3D프린팅(산업용, 개인용) 장비 매출에서 19.4%를 차지
 - 2014년 개인용 3D프린팅 시장은 1.8억 달러(\$181.4 million) 규모이며, 전체 3D프린팅 장비시장의 14.0% 수준

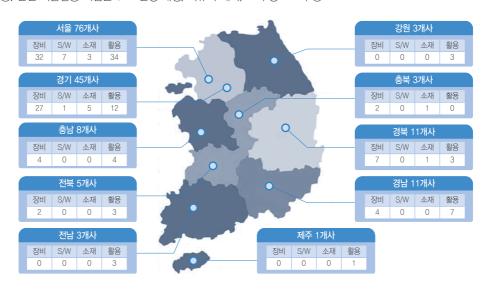
// 기술의 활용분야

- ★ 3D프린팅 산업 전문 조사기업인 Wohlers Report(2016)에 따르면 3D프린팅 기술의 주요 활용분야는 산업용 기계(19.9%), 항공우주(16.6%), 소비재/전자제품(13.1%), 자동차(13.8%), 의료산업(12.2%) 등으로 나타남
 - 산업용 기계는 주요 활용분야로, 2014년~2015년에 2.4% 증가하였고, 항공우주 분야는 2014년에 비해 1.8% 증가, 의료/치과 분야도 지난 10년간 꾸준히 활용
 - 교육기관 및 정부/군사 부문의 활용도 성장하고 있으며, 기타(Other) 부분은 석유 \cdot 가스, 비소비자 스포츠 용품, 상업용 해양 제품 등 넓은 범위의 산업을 포함

※출처: Wohlers Report 2016

| 그림 6. 3D프린팅 기술의 활용 분야 |

4. 국내 3D프린팅 산업현황

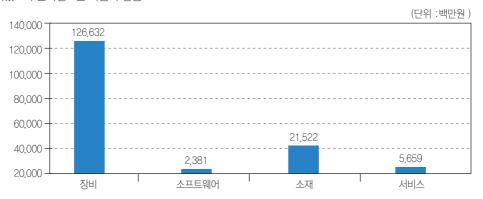

✓ 국내 3D프린팅 주요 업체 현황

★ 현재 국내에서 3D프린팅 관련 사업을 영위하고 있는 기업은 190여개 내외로 추정되며, 이중 주요기업의 분포는 아래 표와 같음

구분	서울	경기	충북	충남	경북	경남	전북	전남	강원	제주	계
장비	32	27	2	4	7	4	2	0	0	0	78
소프트웨어	7	1	0	0	0	0	0	0	0	0	8
소재	3	5	1	0	1	0	0	0	0	0	10
활용	34	12	0	4	3	7	3	3	3	1	70
계	76	45	3	8	11	11	5	3	3	1	166

| 표 3. 국내 3D프린팅 주요 업체 현황 |

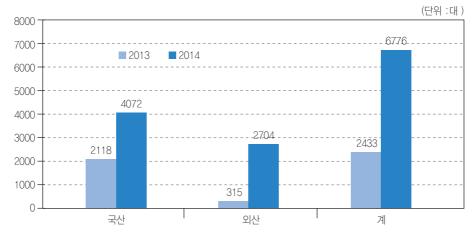
- [장비] 국산 제조사와 외산제품 판매사로 구분되며, 국산 제조사는 48개사 정도로 추정됨. 이 중 25개사 정도가 지속적인 제품판매를 진행하고 있으며, 나머지는 기술개발 및 시장상황을 관망하는 것으로 조사됨
- [소프트웨어] 인텔리코리아, 로이비즈, 3D TADA와 같은 국산 소프트웨어 개발사와 외산 소프트웨어 판매사로 구분됨
- (소재) 대림화학, 쓰리디코리아와 같은 FFF용 필라멘트 개발사와 SK케미칼, LG화학 등 원재료 개발사 및 스트라타시스코리아, 3D시스템즈코리아와 같은 장비와 연계하여 재료를 판매하는 외산장비 판매사 들로 구분
- (활용) 관련 기술활용 기업은 3D프린팅 대행, 피규어 제작, 교육 등으로 구성



| 그림 7. 주요 3D프린팅 관련 기업 분포 현황 |

KEIT PD Issue Report

✓ 국내 3D프린팅 분야별 매출 현황


★ 2015년 실시한 국내 3D프린팅 산업 실태조사 결과 2014년도 국내 3D프린팅산업 총매출액은 1,562억원으로 조사되었으며 분야별로는 다음과 같음

| 그림 8. 2014년도 국내 3D프린팅 산업 분야별 매출액 |

✓ 국내 3D프린팅 장비 판매 현황

- ★ 2013년도 대비 2014년도의 장비 판매량은 국산장비의 경우 192% 성장, 외산장비는 858% 성장을 보임에 따라 평균 235%의 성장률을 달성
 - 국산제품에 비해 외산제품의 판매량 성장률이 4배 이상인 이유는 장비개발에 소요되는 시간과 비용문제로 인한 국산제품의 신제품 개발 빈도 저하 및 외산제품에 대한 선호 등이 주요한 요인으로 조사됨
- ★ 2014년도 국산제품의 수출은 110대 규모로 총 판매대수의 약 2%에 불과함.

| 그림 9. 2014년도 국내 3D프린팅 장비 판매량 |

✓ 국내 3D프린터 유형별 매출액 현황

- ★ 2014년도 3D프린터 매출액을 구분하면 국산 11.6%. 외산 87.7%로 구분되며, 가장 매출액이 많은 유형은 재료분사방식(MJ, 39.7%)이며, 그 다음은 재료압출방식(ME, 28.9%)으로 조사됨
- ★ 국산제품은 PP. ME에 한정되어 있으며 BJ. MJ 등의 유형은 매출이 전혀 없음

구분	광중합 방식 (PP)	재료 압출방식 (ME)	접사방식 (BJ)	재료 분사방식 (MJ)	분말적층 용융방식 (PBF)	고에너지 직접조사방식 (DED)	Sheet Lamination	계
국산	1.6%	4.7%	0%	0%	0%	0.6%	0%	6.9%
외산	10%	24.2%	17.1%	39.7%	1.7%	0.2%	0.2%	93.1%
계	11.6%	28.9%	17.1%	39.7%	1.7%	0.8%	0.2%	100%

│ 표 4. 국내 3D프린터 유형별 매출액 비중 │

5. 결론

✓ 선도국 대비 취약한 국내 기술역량

- ★ (장비) 글로벌 선도기업이 핵심 원천기술(SLS, SLA 등)을 주도 중이며, 국내는 고부가가치 장비 개발을 위한 기술력 미흡
 - * 선택적레이저소결(SLS; Selective Laser Sintering), 광조형(SLA; Stereo lithography)
 - 캐리마, 인스텍 등 일부기업이 독자기술을 보유 중임에도 불구, Stratasys(美) 등 해외 선진기업 대비 기술경쟁력은 취약
 - * 디지털광학기술(캐리마, DLP; Digital Light Processing), 레이저 금속성형기술(인스텍, DMT; Direct Metal Tooling)
- ★ (소재) 플라스틱 등에서 고부가가치 소재(세라믹, 바이오, 복합소재 등)로 활용분야가 다양화되고 있으나 국내 관련 연구개발은 미흡
 - 3D Systems(美), EnvisionTEC(獨) 등 글로벌 선도 장비업체는 전용 소재만 사용가능(RFID 탑재)하여 고부가소재* 시장의 종속 우려
 - * (티타늄분말) \$700/kg, (코발트 · 크롬 합금파우더) \$545/kg, (포토폴리머레진) \$175-225/kg 등

₩ 기업 활용여건 미흡

- ★ 旣구축된 장비를 기업들이 활용하기에 전·후처리 장비가 부족하고, TP·연구기관은 산발적으로 장비 구축·운영 중
 - 3D프린팅 장비는 있으나, 메탈제품의 서포터를 제거하는 후처리 장비 등이 종합적으로 구축되어 있지 않아 유휴설비 많음
 - 대부분 시제품 출력 위주로 사용되고 있으며, 구축된 장비의 종류 · 적용범위 등 정보 파악도 어려운 상황

PD ISSUE REPORT JUNE 2016 VOL 16-06

KEIT PD Issue Report

☑ 제도 기반 미비

- ★ (표준화·품질평가) KS규격 등 표준화 전략 및 품질 평가 체계 미흡
 - 3D프린팅 관련 국제표준이 제정되고 있으나, 이에 대응한 KS규격이 없어 표준화된 국산 장비·소재 개발 지연
 - 국내 생산 장비·소재의 성능, 안전성 등 품질평가체계 부재로 국산 제품의 공신력 확보 애로

✓ 국내 3D프린팅 산업 경쟁력 제고를 위한 정책방향 제언

- ★ 국내 기술력수준 및 시장흐름 등을 고려하여, 단기적으로 산업용 프린터 기술개발과 시장조성을 위한 수요창출 중점 추진 필요
 - 3D프린팅 기술은 금형을 통한 기존 대량생산 방식과 달리 맞춤형 또는 복잡구조 제작방식의 소량생산 분야에 적합

산업분야	3D 프린팅 응용 분야
조선	• 소량 생산되는 선박용 대형 프로펠러 · 실린더 등 부품 생산 • 유연한 금형 변경
항공우주	 일반 제조기법으로는 불가능한 복잡한 기하학적 부품 생산 부품의 성능을 다양한 정도로 조절 부품 경량화
자동차 제조업	 여러 부품을 조립하는 대신 하나의 복잡한 부품생산 고장 시 대체할 부품 생산 제품 개발 주기 단축
의료	 MRI나 CT를 바탕으로 정교한 해부 모델을 응용, 수술 선계획 개개인에 맞는 보형물이나 인공장기 생산 해부 실습에 인공 시신 활용

**출처: pwc 보고서, The road ahead for 3D printers

| 표 5. 3D프린팅 적합 산업 분야 |

- ★ 3D프린팅 기술 활용이 적합하고, 그에 따른 파급효과가 클 것으로 기대되는 분야(의료기기, 조선부품 등)를 선정하여 우선 지원
 - (맞춤형) 의료산업은 개개인의 특성에 따라 차별화된 서비스가 필요하여 맞춤형 제품의 효용성이 크며, 시장 수요도 존재
 - * 인체맞춤형 치료물 적용 예시 : 인공관절, 임플란트, 보청기, 인공기도 등
 - * 딜라이트 맞춤형 보청기(100~180만원), 일반 보청기(34~92만원)
 - (소량생산) 복잡한 구조, 대형 사이즈, 고비용, 제품 단종 등의 원인으로 소량 생산되는 조선·항공·자동차 등 부품산업 분야
- ★ 조선·항공 등 부품 산업의 경우 최종제품 생산이 가능한 지속적인 기술개발 추진 및 시장수요 창출을 위한 기업지원·홍보, 품질인증지원 체계 구축 필요